Fast spherical Fourier algorithms
نویسندگان
چکیده
منابع مشابه
Fast and stable algorithms for discrete spherical Fourier transforms
In this paper, we propose an algorithm for the stable and eecient computation of Fourier expansions of square integrable functions on the unit sphere S R 3 , as well as for the evaluation of these Fourier expansions at special knots. The heart of the algorithm is an eecient realization of discrete Legendre function transforms based on a modiied and stabilized version of the Driscoll{Healy algor...
متن کاملFast algorithms for spherical harmonic expansions, III
We accelerate the computation of spherical harmonic transforms, using what is known as the butterfly scheme. This provides a convenient alternative to the approach taken in the second paper from this series on “Fast algorithms for spherical harmonic expansions.” The requisite precomputations become manageable when organized as a “depth-first traversal” of the program’s control-flow graph, rathe...
متن کاملFast algorithms for spherical harmonic expansions, II
We provide an efficient algorithm for calculating, at appropriately chosen points on the two-dimensional surface of the unit sphere in R, the values of functions that are specified by their spherical harmonic expansions (a procedure known as the inverse spherical harmonic transform). We also provide an efficient algorithm for calculating the coefficients in the spherical harmonic expansions of ...
متن کاملFast Algorithms for Spherical Harmonic Expansions
An algorithm is introduced for the rapid evaluation at appropriately chosen nodes on the two-dimensional sphere S2 in R3 of functions specified by their spherical harmonic expansions (known as the inverse spherical harmonic transform), and for the evaluation of the coefficients in spherical harmonic expansions of functions specified by their values at appropriately chosen points on S2 (known as...
متن کاملFast Algorithms for the Hypercomplex Fourier Transforms
In multi-dimensional signal processing the Cliiord Fourier transform (CFT or in the 2-D case: quater-nionic Fourier transform/QFT) is a consequent extension of the complex valued Fourier transform. Hence, we need a fast algorithm in order to compute the transform in practical applications. Since the CFT is based on a corresponding Cliiord algebra (CA) and CAs are not commutative in general, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2003
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(03)00546-6